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1. INTRODUCTION

Since the end of the twenties many efforts have been done in
order to develop a complete theory of the formation and growth
of .clusters in supersaturated systems /1-2/. We remember the
classical nucleation theory /3-4/ which is valid for a descrip-
tion of nucleation in an infinite system under isothermal
constraints. A limitation of the total particle number leads to
a dependence of formation and growth of clusters, because of a
decrease of free particles. In particular, in a supersaturated
vapour the formation and growth of different clusters 1is
coupled by the vapour pressure and one finds a scenario of thne
phase transition where three stages can be distinguished /5-7/

(see also the accompanying paper /28/).

The present paper deals with the description of nucleation and
growth of clusters in an iseclated binary system, consisting of
a vapour and a ‘neutral carrier gas. Due to the cluster
formation the latent heat of condensation is released which
leads to an increase of the temperature. We will show here that
the isothermal nucleation process can be derived as a special
case from this general point of view. The other limiting case
discussed here in more detail corresponds to the nucleation of
a pure vapour under iscenergetic cenditions. For this case

results of computer simulations are presented.

For the formation of clusters we use again a stochastic
description which restricts itself to a mesoscopic time scale
/6,11,16/. That means a scale where the microscopic processes
are not considered in detail but reflected by small changes of
the macroscopic parameters of the system (e.g. pressuwre,
temperature). The cluster itself is described similarly to the
classical droplet model /1/. That means it can be characterized

by a macroscepic density and surface tension.

It

2. THE GENERAL MODEL

2.1. MODEL OF THE ISOLATED SYSTEM

In the following we consider a closed and finite isolated
system. That means a fixed total internal energy U, a fixed

system volume V and a fixed total particle number N:
U = const., V = const., N = cophst. ' . {(2.1)

The constraints are chosen in such a way that the system exists
in a gaseous.state. This gas consists of two components: a
condensable vapour specified by the index "v" and & carrier
gas denoted by the index "o". it is known from experiments on
vapour condensation that the carrier gas is used to take o<m$
the latent heat which is released during the condensation
process. The carrier gas should be uncondensable under - the
given constraints. The total particle pumber N therefore is
divided into the particle 1caum1m of the twe components, beoth

UWMJG constant:
N'= No + N 2.2y

Due to interactions between the particles a number of particles
of the condensable vapour is bound in clusters and a discrete
distribution of clusters and free particles in the gas exists.

This distribution is described by the vector N={N,,N.X:

N o= € Moy Nay Nay weey Nay aney Nu ¥ (2.3

Ne is the number of the free particles of the carrier gas, Ny
the number .o* free particles of the condensable vapour
(monomers) ,  Nza ﬁzm, Tcaum1 of bound states of two particles
(dimers) and so on.

Because of the limited number of particles it holds:
N, = Z n N, = const. L2044

n is the number of condensable particles bound in the cluster,
the number of clusters consisting of n particles is denoted by.
Np» For the maximum :C?Umw of clusters it fellows from eq.
(2.4):
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(2.9
G & N & No/n

N.ML THERMODYNAMIC INVESTIGATIONS . e yeten
in erder to evaluate the thermodynamic properties o -
we start - with the free energy F(T,Vv,0) for the c«o o=
cluster distribution N in the volume V and at the tempersa e
T We assume that T is a global parameter which depends MJ o
Mmmm:ﬁ nubmﬁmW distribution. The free energy of the c Mmpm\
”wmﬁ1wccﬁw03 has been derived in ,U1m<womm UmUmHmnw“HMmWW
assuming i sothermal conditions and an ideal 3~xﬂ£1w M oﬁl -
and free particles (canonical ensemble). It consists O
parts with respect to the carrier gas (Fo) and the con

vapour , H_nHEn_u.:@ the cluste dist ibution (Fo) . We found o

the free energy:

F(T, Y = E Z:ﬁ*3+xu4mw3A?JGZJ\CVI»uv +
u (2.8}
ZG:U4HHDAPOGZO\CVIwu = F, « Fo

where Aa iS the de—Broglie wave length
(2.7)
An = h(2umabksTY 272 .

! cluster
£, is a potential term characterizing the energy of the

of size n, which will be specified afterwards.

By means of the free energy Amn_-b.....&g the entropy of the cluster

distribution can be derived by:
(2.8
S(T,V,N) = — AF(T,V,N) /38T lv.n -
it results /67

k

= k 55 — kp—23fn/3T — IN(AaSNa/VI] +
S(T,V,N)= kaI NnlS/ » o
kaNo[H/2-1n {Ae™No/V)1 = Sy + 8o

wher S tand for the contrib \wwion of the C uster distribu-
e =) = [+] u 1

tion and So is connected with the carrier Qas.

Using the relation U=F+TS the total v:ﬂm«_.mw energy V] can be

calculated by:
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UCT,V,N)= & ZJAMKU4\N+ﬁII40+L\w4v + 3kaTNg/2 . {2.10)

order to gét from eq.(2.10) the dependence of the tempera-—
ture on the parameters U and V

in

and the actual cluster
distributien N we have to specify the potential energy term and

its temperature dependence f.(T). After this specification the

inversion  of  UsU(T,V,N) (eq.2.10)

gives the function
T=T(U,V,N),

which has to be inserted into the expression

(eq.2.9) - to get finally the state

for
the entropy

function
S=5(U,V,NY.

3. KINETIC APPROACH

3.1. KINETIC ASSUMPTIONS : >

The nucleation process consists of the formation of

nwcmﬁm1mr
their growth and. shrinkage.

The cluster evolution is
sented by the time umtmaouamsﬂ of the

NG Nz yuua sNNT.

repra-—

distribution N =

In order to discuss this evolution we make the
tollowing assumtions:

(i) The growth and shrinkage of a cluster is due enly to an
attachment or evaporation of monomers of the condensable

terms of chemical kinetics this process can be
represented by the mﬁnnzmmﬂwn reactions

vapour. In

An + Ay {========> Agey (3. 1)

W™ o . -
‘w* and w™ are the transition probabilities per unit time
for the

stochastic reaction in the given

direction. They
will be specified later.

(ii) Interactions betweén clusters,

like coagulation or colli-
sions between

two or more,clusters are npot taken inte
account. Also a break of a cluster into pieces is not
considered. The probabilities of these events should be
negligible in  comparison with the probabilities of the
reactions (3.1) /24/.
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3.2. MASTER EQUATION AND EQUILIBRIUM PROBABILITY DISTRIBUTION

From a statistic peint of view every possible distribution of

rlusters N is found with a certain probability at a given time,

defined by

(3.2

PN, E) = PiNoy Niy,NayoowsNayooo,Noy €Y -

in a stochastic theory the formation and growth of clusters can

be described by the change of. P(N,t} with time.
1§ the kinetics of nucleation is considersed as a Markovian
the dynamics of the probability FiN,t) to

find a certain cluster distribution N at time t obeys a master

discrete process,

equation:

AP (N, £) /Bt = TOw(NINDPIN' £ —w (N7 INDFIN, )5 3.3

The quantities w(N'iN) are the transition probabilities per

unit time for the transition from N to N'. N specifies those

distributions which are attainable from the assumed distribu~

tion N via the reactions (3.1).

The stationary seolution of the master equation requires that
3P (N,t)/3t=0. From this condition we find £ JININ")=0 with
QAE“Z.VHSAE"R.vnAZ..HV|SA2.“Evvnﬁiﬁv being the probability flux
between the states N° and N.

the system is not pumped the equilibrium condition is
dition of detailed balance. It

Since
given by the more restricted con

means J(NIN‘)=0 resulting in:

WININDIFe(N') = wiN’iMF=() . - (5. 4)

P=(N) is the equilibrium probability distribution in the space

of all possible particle noz*wﬂcﬁmﬁwOJm. it has been derived

from microscopic considerations /&/. As the final result we

obtain
Fo (No yNu) =exp {8 (U ¥, NayNay oo v s N =8 (U, YV N) 3/knd (3.5

where S(U,V,No,N1,...,Nn} is the entropy of the assumed cluster

distribution and S(U,V,N) the entropy of the N particles

system. it is a constant for the fived
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thermodynamic

co i 5
:mﬁwmw:ﬁm (2.1) and acts as a normalization

We not r e
e, that for the calculation of Fo(N) the stat
N

8=8(U,V,N) is needed. function

3.3. TWO LIMITING CASES

The thet :.Oﬂ<_.m=_wn H_.(mmﬁuﬂmﬂuo_.m of section 2.2. allow n to
derive two limit cases for the equilibrium U_.AO_UNUHHHH( .

bution FPe(N) /67, distri-~

Because of the thermodynamic

ield i relati i
Y s for isolated system with the constraints e e

(2.1):2
U=F+ TS = const

Further th
y e entropy consists of two parts describi
ibing the

contributio i
ns of the carrier gas and the condensable vap .
our:
S =8, + 8,
(3.7)
We can now discuss the limit cases /&/:
(i) Ng»>Ne .

In thi :
S case the temperature can be approximated b
: X Yy
T & Ta = .
To 2U/3kaNg = const.
{(3.8)

That means th
e latent heat whi .
which is relased i
during the

conde i i

nsation process will be transmitted to th -
Plays the role of a heat bath Chae
conditions. ’

ier gas. It
Therefore we have isothermal

It results from eq. (3.6) that the _H_.W:@m of the entyr opy in th
e

isothermal 1limi
limit can be expressed by S=(U-F)/T and th
e equili-

brium ili i i
probability distribution (eq. 3.5) is now gi
iven by:

Peo(Ny ~ - FA(T T T= 3.9
) exp { FOT,V,N) 7kaT 2 c t
. =const. (3.9
{ii Ng —— I
1i) N, > 0 If no carrier gas is

r .
the condensation present, the latent heat of

r
process leads to an increase of the

rature of . — : M
T the system. It results from eq. (2.9 § : U.
o N - (2. - 0 in th
m Ne —=2> O, Therefore, we obtain fro { , =
i m eq. (3.7) 8 = g
F=(ny ~ { = 3
N exp L S (U,V,N) /kyg ¥ U=const
nst. (F.1Q)
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Thus the nucleation process in the considered binary vapour may

in the 1limit cases given above either to an

re reduced
n one—component vapour (i) or

isothermal nucleation process in a
isoenergetic nucleation process in  an one—component

irst of these two limit cases has been

to an

vapour (ii). Since the f
widely discussed in previous papers /8,7,16/ we restrict

ourselves in the following to the investigation of isoenergetic

\3£nHmWﬂwo: in an one—component vapour.

4. ISOENERGETIC NUCLEATION
4.1. THERMODYNAMIC INVESTIGATIONS

In order to solve the master equation (3.3} which describes the

stochastic evolution of the cluster distribution now we need
the proper transition propabilities for the assumed stechastic
reactions (Z.1). In the following we discuss the isoenergetic

Inserting the equilibrium probability d
of detailed

the

limit case. istribution

Fe{n) (eq.3.10) for this case into the conditien

balance (egq.3.4) we find the following relation between

transitien probabilities wiNiN") and wiN’ 1Nz

WM = wiN IN) expilS.(U,V,N) =8 (U VN 1/ kad - (4.1

By means of this condition only a kinetic assumption for one of

The transition probabi-
ovided the

¢he transition probabilities is needed.

1ity ¥or the opposite process €an be obtained with pr

entropy S(U,V;N1y.naqN) is known. This function S5(U,V,N} is

determined in the following in more detail.
pression for the entropy (see eq.(2.9)). In

In section Z.2. we

found the general ex

the limit case of vanishing carrier gas No—— 0 we get S, = 8
S(T,V,N) = kpENALS/2=1Nn {An™ N, /W) —(1/kp) 3F, (T} /BT . (4.2)

binding energies f.(T) for each cluster size n
the thermodynamic

The negative
to be incorporated empirically into

have
theory. As a first approximation one could use a form similar
to the Bethe—Weizsicker—formula

(4.3)

FaPW(T) = padT) n + € An
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which includes olume and sur face terms only. The surface of a
v Y

spherical cluste
r containing n mo
nomers is denoted
by

D.J = f}; nPn=Rs
={Cod4n/3)—
W3} RIInzoE Cx is the particle d
. ensit ’
surface tension both taken .o

.and pa

the liguid, ¢ is the
here as.
(T) is the chemi

. ical i

in the macroscopic fluid e o

temperature independent

1

a monomer
amononer In accordance with

oplet model the surface tension ¢ and th . o

e - particle

b4
L3 umed to be constan S P
densit c are ass t also with r ect to the
25| [ =4

curvature,

~

By a comparis
on o .
energies 1t f eq. (4.3) with experimental data for cl
becomes evident that the expressi ¢ Fhuster
N g ion (4

for large clusters only. -3) is  wvalid

Thus a correct
; X ed i
is desired. Taking into version of eq. (4.3)

ace i
particles ount the condition that

{(monomers) have no binding energy e
fF.(T)Y = 0 ,
{(4.4)

we propose the i
ollewing approximation for the potential
ial energy .

f = — - .f, : -—_ ,
AT =pa (T n{l-1/m=) vALn (1-1/nm)
Ay n=ss ne

This so—called Fadé approximation for all cluster s1zes has two
s : p

(n=2...10). clusters

We ' i
have carried out this for water clust

from eq.(4.5) o T=293 K the valu Brs getting
e

fa=9,07ksT (x=1.1

B=2.4) in
I good agreement with the experim e
==9. kaT /297 for water dimers e e
From thermod i in
o . ynamic investigations the followin i
chemical potential pu(T) is known /20, P pression fer
[ = i
Hea (T) kaT 1N {Cuql(TIAy™S) . ‘
{(4.86)

Usi g the C1 aus : eron-— & for he ¢ perat -
n b lus-Cl ap O equation Ol t em a
- ure amum_’.

dence of the equilibrium vapeur pr essure we find

Cow A_v"nﬂ dexp{la k A T - T H 4.7
a (To Xp QR ‘m) L {1/ o) 17713 .
{4.7)

with the refer ili
ence equilibrium concentration c at th
o e tempera-

Y




ture To and the heat of evaporation aQ.

Startin fro eq. (2.10 n T (3.5)~(4.7) we calculate
t t a i q 0) and using £qsS. )

the temperature via

U= o A+ 88 M= (4.8

T,V = e N+ (5/2)Mud

with the abbreviations

L9
Ne = I N (n=1a M) (4. 10)
- = I $AL1D
Mo = T Z.J_anlu.\:.!u ADHM‘_.-“Z/\V A.11)
B = T Moo (i-1/n%) (=2 wn N
o wystem

ge of the temperature of the

& i interral
cluster formation for & fixed

Eq. (4.8} describes the chan

resulting from the

energ U and a fixed volume V. Let us note that the temper ature
Y

in ocur appt cach is & DHOUWH pat ameter. heretore, the latent
heat r eleased or consumed during the attach nent or evapor ation

i i i ib
articles should be immediately distri .
A Eqg. (4.8) allows the calculation of

uted in the consi-

the state
dered veolume.

i sult is given
tion entropy based on eqg. (4.2)Y. The final re
functi

by:
U - 7 Ag + 48 Mo
§(U,V,N) /kp=[ (F/2INat {5/ Mad In—rm o i Tomn T T 2 Mad

05/ Nk L (5725 —1n{Aa (To) Beo) —aQ/kaTo

(4,132}
~ £ Naln{Re™n~=/2N./V) .

4.2. TRANSITION PROBABILITIES

atio O onomer to/from cilus S W assume
the evapor t i + mon ers + the 1 ter [=) ssum

e/ that
greement with previous papers /by 1b6,87
a

te a clu
bability of the attachment of a monomer
pro

the
increases with the surface area of
n i

i wit
number of clusters of size n and

particles of the condensable vapour.

special process of attachment
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in
the transition
ster of size
cluster, with the
h the density of the free

In this way we get for the

s

iz

1z
i

WINa =1, e e NA=  Nasa# 1,00 o  NiNG , . o N

ye e ey NRD

i

Wa* (N3N, ) = X (TIALINZ/IN, N, /v
ZnHZ(IMJZJ

. (4.13

We note, that the transition probabilities for the growth of

clusters of different sizes are correlated, since the number of

free particles depends on the whole cluster distribution.
the clusters nc.:Oﬁ evolve independently.
The parameter «(T) determines the time scale of the

processes.

Therefore,

stochastic
One has to consider further the specific properties

of the surface, like surface tension o, composition of the

surface and the sticking coefficient.
x(T)

A proper estimation ﬁﬁ,
can be done only from microscopic considerations of the
Process of attachment.

We assume in a first approximation, that the kinetic energy of

the free particles is large compared with the enerqgy barrier aFE
at the surface which must be overwhelmed to incorporate the

particles: into the cluster (aE << KaT). In this case we may

choose /8/:

x(T) = o kpT (4.14)

where the proportionality constant mo reflects the

conditiens
at the surface.

A possible choise of X has been proposed in
refs. /22,25/ based on a comparison with deterministic

equations: «a=Dc./2o.

growth
D is the diffusion coefficient assumed to
be nearly constant. )

The nwmammﬂwoz probability UMT.::mﬂ time for the evaporation of

one particle from a cluster of size N can be obtained from

eq.
(4.13,

The calculation of the exponent is complicated because

both -the temperature and the number of free particles of the

condensable vapour depend on the whole cluster distribution.

After a careful evaluation of 8(U,V, M) -8(U,V,N") (eq.4.12) and

a final transformation N-=>N"y, N’—=>N we obtain the transition

probability of evaporation

WINTINY = WNatlyeon s Nnoa bl Na=d e e o N
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{4.15)
= W (NR)

HakeToRin= "N (1-1/n) =4 enpl (aQ/kaTo) 13
= Xofsploha -

I —_Cm—2 >
= memm sE1? (T /T ¢B/F2 <0
(T /T) =™ 7=

— — o— 1 uJ.
pLl5/2-1n (X Fe 1 -aQ/kToll1/n="*—1/(n-1) 3
ex 2 o
. ; b
with the temperatures T' and T given by

U — 0 Pe’ + AQ Ma’ (4.16)
TN = S A NG+ (5/2) M’ ]

with .
. = - ; - nT—* )+ n 14.18)
—_ uﬂ‘ﬁvu
Mo M (1/ ty+(1/(n—-1
o P L1 o
A = Ao ~ A1NZT/Z(1-1/n2) + By (n-1)=7S(1-1/7(n=1)") 4,19
n». > 1
and e 4 4.9-4 b i ly.
d eqs. (4.8 .11) for , respectively
. .8,4.

a
y is proportional to the surface are
I+ strongly depends
with an

This transition probabilit . o
the number of clusters of size n ag i
o - (eq.4.16) rapidly grows P

- w i
on the temperature d most of the clusters have to
an

: ature
increasing temper

evaporate again.

) ISOENERGETIC
MULATIONS  FOR
F COMPUTER  SI
5. RESULTS O

NUCLEATION
CYION
S.1. NUMERICAL ANALYSIS OF THE ENTROFPY FUN

function
to investigate the landscape of the state
e -

In order : i 1 space of

i high dimensiona pa ] )

entropy (eq.4.12) in the ° V) cluster distribution
k)

independent

i i energy U, volume
variables (inner s vetune
yNre) we fix the values of ]

Ni Nz, ceu gNay -u over the N-

for the extrema of the state function

and look the equilibrium

to
ce The maxima of S(U,V,N) correspond
space.

cluster distribution
Lo T 3 -
Ne = £ N, N2, ... 4, Na®, ... , Nu® 3

2.4)
C s f the system (eq.2.
. ; t the finitness O
Taking intoc accoun

No = £ n Ny = Ny n N, = const

+ I
n=1 n=2
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the extrema of the entropy Ewﬁj respect to the npumber of

clusters follow from

Ha = 35(T,V N 7 8NA o, 0. #y = O for nz2z , (5.3

Using the notation Hn for the chemical potential the

tion of (eq.5.3) leads to the so

caloula~-

~called mass action law. This
formal expression was obtained in /&/.

But here we use a different approach which is more convenient
vetems with mamHHﬁanmumW numbers as we are dealing
Ny o= 1)

YRy T e N

for s withs
A numerical analysis of the high dimensional

entropy gives the equilibrium values (eqg.5.1). Using the

method step by mﬁmu we search in the cluster space N

for the maxima of the entropy. We find two maxima of S which

gradient

are devided by a saddle peint. This is a typical situwatiom for

bistable systems. The metastable primary

distribution Nmwe
consists  of a

number of small clusters, but in the final
cluster distribution N=% . we «M:m one big cluster accompanyed by
these distributions there exist a
relative minimum (saddle point)

few small clusters. Between

which corresponds to the

critical distribution N=~. The activation energy

Eail,V) = S,V Nmee) = 5oy, v, =) {5.4)

is a measure for the probability of a transition from Nmwe o
M=, ’ :
Summerazing the parameters of the considered system
Inner Energy: U = 2,09765 10-1s g
Volumes V = 1.9 10-=1 p= T
Farticle number: No = 15000
and the data for liquid water /29y
Ligquid density: Cow = I.35 1028 g
Surface tension: g = 7.3 1072 Lg/e=2
Diffusion coefficient D = 10=® p=,g
Molar mase M = 18 Lg/kmeol (S.4)
Heat of evapcration AQ = 7,35 107RE g
Reference temperature Ta = 293

Equilibrium concentration
of vapour at Te c
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we get npumerically the following equilibrium distributions

{eq.5.1) for our system (eq.5.5)

Nt = € Na=14901, Na=34, Ns=é, Na=2, Ne=1 ¥

S(U,V Nm=E) — Shom = 42.4956 k= (5.7)
and
nme = { N,=14811, Nz=20, Ns=1, Niae=1 %
SU,V,N*%) =~ Snom = 85.9367 ks {5.2)
with
(5.9

Sheom / ks = 277872.18

as the value of the entropy for the initial homogeneous

=15000 ¥ at time t = O-

= £

situation N = ¢ Nj,
of the stochastic

in the following Wwe discuss the results

isoenergetic water system

nucleatien in a

simulations of
The calculatiens were

(eq.S.6) of 15000 particles (eq.5.5).
he 16-bit coemputer ATARI 1040ST and one run requires

done on t
As the starting point we use

about 40 houres of computer time.

umwmmﬁcwmﬁmu situation of monomers

homogeneuos Su

an uniform
that means we have at t=0:

only (gaseous state),

particle distribution: MNe = N1 = 15000

mcnmﬂmmﬁEWWﬁwoju y = 12.635

Entropys Shem/ ke = 277872.18 {5.10)
Frem/ksToe = ~-255372.18

Free energy:
Fressure: Prhom = %1.92 kFa

2}

Temperature: Tham = To = 293 K

the master equation (3.3) with the transition

5.4.13,4.15) the nucleation pro
simulation

according  te
_rates per unit time (eq

simulated. Not geing inte
kinetics of the phase transition
{here we use instead of

n. The time

cess  is

the details of the
procedure the is shown in
describing the frequencies N
nNn) over the nwcmﬂmwm sizes
snapshooted at nine

Fig. 1,4
N. the quantity

evelution of the droplet ensemble is
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1 erent 1 S - - - , e P
diff time :,uu.ﬂ la-i) For these nine steps we resent in
(5.11) the cluster distr PUCWHO..W« the values of the reduced

Py = M
entro F q(q ( ) - m.ao..: a u Y n
t vm Sy Nt) nd furthe quantities {cee

a) t =0 ns, O
= ¢ reacti
N = < N1 =15000 ¥ ghions =
N>, ¢ 072180087 (5.11)
T =293 K, y = Hu.mm “R :
b t = 0.032 041 - T e
= s RS
mmqwﬁ mﬁnﬂaomu zn-omwmmmmpm:m
857kg = 28.36,"sF = o 08k wmnmuumH Ne=i
) - K, y = 8.427, N = 36, fi. B wwc.mwun KBS

c = T "

M = w mmm :mMv 297084 1mmnnp03m nT oo e

Nm\rh HubM#mHN ZWHGN s N==5 Zbl Zm 4N 1,N

aslks .5 =198 8 128 jrhes “iaNa=pp 2
20340 0,0 118 ao wana d. 2p 4nw.0pumr” s

" oo 0y = = 138, Ax = 44.87 nmmR

NN l»bmwu Jmmww mmmnﬂpo:n
. = gz =
$9lm 0 Ak AR T 1535515 et Nt N
2.81 K, y = 6.944, Ne = 45, #.*B 7 182de kes

Lo s Mo = HHo An = 38,82 nm=
vz w.z 2 Jmm 565807 1mwnnu03 -
N = & Ni=148b9 z:lum Neod,Na=s
T = Z20a »w eu, =22 3738 T Nasg o Nz=m1

504.54°K, 'y = 6.069, Na = 46, WM. 2P13 11069 uPa,

. Lo = 131, Ax = 40,51 nm=
53 mw 32837 reactions .
Mw\rh HuMM#m 1 ZNIGQ Ne=5, N MH N
357ks = hm.ﬂh NEs Iuw.wo aHD| &= 1s uVHH.ZNNHH i

5y = S.377) Ne = 38 3. 2P 3gltale_KEa,

N f o _ s Moo = 129, £, = 36,44 nm=
i :mm 82435375 reactions
a5 ks D154 550 NETI0 Ne=E et L :
55/ky =S4 ww oF = 117.587°752087 Nem1 Naemt 3

Ky ¥y = 5.880, Ng = 37, 3 » 5p z T71308 kpa

. e k = 120, A, = ;#.WHJS
I8 mw 1048963 reaction
N =< Ny=14377 zn:uu.zuu Newo! 3
§5/kg = 7.32, uF = uum.omqowmwpw

i) : K)'y'= 2.350, Na = 26, WL 2P1350 3712 KPay

H _ - e o ot = J
y = w moc ns, 2142908 1mmnﬁpo:m . e
N = CN 1214796,Nz=18,N5=3,N1op=1_3
45/kg =’ Na.-n, aF = lwn.wmpuwmnmua

2. T E = 1.235 R4 1002 Jy ap = 3I.3191 kFa
- = 22, Mo = 204, AL = D9.&5 nm2

It is obviou :
s that the isol
ated system r
elaxes inteo the

thermodynamic mﬂCwHU__ um characterized b the maximum alue ot
Y 1 Y
® [RY v (¥

the entro (Fi
Py ig. 2). The results of a single run (Fi
ig. i,

Fig. 2) an 2 mean value o e runs 1g9. .3 nens &
qg o d th e 1 f ten [% {F ) d nstr
1 g
N e te

quite clearl <1 i
y the kinetics (Fig. 1) and thermodynamic (Fi
s ig. 2,

g. 3
Fi - of the nucleation process in time
- We note the

agreement of i
the numerical and the theoretical
equilibrium

values for the i
primary distributic
n (egs.S.11b, S.7 .
Selib, 5.7, Fig. 1b)
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Fig. 2: Time evolution of the reduced entropy S(U,V,N(1))-Som
: for a single simulation.
A .
as®™ o8-k
! ! . A
|
_ 4
?’\mm E N == = ] .
* 1 .
o . . . — . , -
[a) 2 rtIns
. ] ) Fig. Z: Time evelution of the reduced entropy wAC.CLEAﬂVV(mJOE
< . m<m1wmma over 10 stochastic simulations (runs) of the formation
of water droplets. . ‘
k and the final ummﬁWwUEﬁwoa,Amnw.m.uan 5.8, ﬂwa.‘uwv. We want
1@ -
te underline that the behavior of the state function  entrepy t
(#g-4.12) over time (Fig. 2, Fig. 3) depends strongly on the
= ) : correct expression of the potential energy f,(T) (eq.4.5) . In |
) . particular, .mUUH<w:m the simple Bethe-Weizsidcker—formula
. W s n ¥ = ) 1 Hﬂ@ﬁ ) {(29.4.7) to all cluster sizes we get incorrect results and a
= =D S eter .
a Evolution of the droplet mjwmﬂwMmQWMﬁWMWMWMw:ﬁIMCHMﬁwom wrrong behaviour of the entropy. We come to the conclusion that
Fig. 13 Evoluti 11y Snapshoots © S e Farameters an
equation numerica ,qhmn nEor different times.
Jm: over droplet sizes

further mxnymjmﬁwojm.mmm text.
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a carefull analysis of the Uw:nw:a energies of clusters,
especially of small nuclei, together with experimental data is
necessary to understand the qualitative and quantitativ featu-
res of the dynamical and thermodynamical properties of first—

order phase transitions.

5.2. TIME EVOLUTION OF CHARACTERISTIC QUANTITIES

In the following pictures (Fig. 4-9) we present the time
evolution of some characteristic quantities during the oas-
liquid phase transition of water (isocenergetic nucleation}. As
already shown in Fig. 3 by the averaged entropy we have done 10
independent stochastic realisations solving the master equa-
tion. These mean values calculated as functions of the cluster
distribution N(t) and therefore of time are shown in Fig. 4-9.

The temperature (eq.4.8, Fig. 4) and the pressure (eq.5.12,

Fig. 5
p(U,V,N) = ksT/V I N, {5.12)
& TAK
327
e : b-ﬂi.lu ‘! e
] P o
293 v v v v r
[2] . ) 2 v.m\:u

Fig. 4: The increase of the temperature in the system of
condensable particles during the nucleation and growth of
liquid water droplets.
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a - -
. Z T/ns
Fig. 5: The change of the temperature of the isclated system

results the growth of the pressure ap = p(U,V,N(t)) ~ Cd
the same time as the number of free UWWﬁMmeW ww amnwmwmwmm. i

=
PN.-mer

] i , ~
E ffﬂ&ﬁf&f

1.34 v v g .

e ’ ' i 2 ﬂ?\ﬂu

F g. I-H he ve w@mn me evolution of the L 3 W1lT
1 : T a 14 ti Super sat atior ith
¥ mmnmnﬁ te the Wmanmw ature Qmum__n_m:nm of the equilibrium
concentration of vapour.

are increasing. The supersaturation {eq. 5.13, Fig. &)
Y = AN2/V = CaqlT})/Caal(T) (S, 1T)

O

starting with y=12.6% goes down to its mu:meUWHEJ value.
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ig. 7: The averaged time evelution of the overall sur
MM@WHH clusters ﬂmwﬁjo:ﬂ monomers). The figure shows the :Mmmw
growth of small clusters in the first mﬂmmm of phase transi »%a
and the minimisation of the surface in the stage of Ostwa
ripening.

& Mg
202

s T

6 . , . —-
o ’ Z t/ns

Fig. 8: The averaged time evolution of the overall number of
bounded particels.

All these ﬁzmwaou<lmawn quantities and characteristics of the
droplet ensemble, too, as the total surface of all drops
Ax = £ AnNL ,(Fig. 7), the total number of bounded monomers
Mex

fl

L nN. (Fig. 8), the overall number of clusters N« = 3% N
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[}

.
a 2 Ttrns

Fig. 9: The averaged time evolution of the number of all
Eion Tof shall cTultereis the Tor5ioufe shous the fast forma-
and their evaporation during the stage om Ostwald ripening.
(Fig. 9) make transparent the three stages of the transforma-
tion process: nucleation, growth and Ostwald ripening (The
summation index n goes here *TOB n=2 /dimers/ to n=N.). During
the first very short WﬁW@m. .wD the supersaturated vapour small
nuclei are formed by thermal fluctuations. I we take inte
account a depletiori of the vapour in a finite system, that
means the supersaturation decreases because of nucleation, at a
certain value of supersaturation no more overcritical droplets
are able to arise and n:m.mﬂozﬂm process of -the esteblished
droplets is dominating. For a more decreased supersaturation
the growth is converted ﬁm a long-time competition process of
the droplets, that is the so nmuwmn Omﬁimuu.WMﬁmjwzm.
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